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Abstract—This paper describes two robot systems designed for

urban search and rescue (USAR).  Usability tests were

conducted to compare the two interfaces developed for human-

robot interaction (HRI) in this domain, one of which

emphasized three-dimensional mapping while the other  design

emphasized the video feed.  We found that participants desired

a combination of the interface design approaches. Additionally,

participants desired a combination of the interface design

approaches, however, we also observed that sometimes the

preferences of the participants did not correlate with improved

performance.  The paper concludes with recommendations

from participants for a new interface to be used for urban

search and rescue.

I. INTRODUCTION

Over the past several years, two different interfaces for

human-robot interaction (HRI) have been built upon a

similar robot base with similar autonomy capabilities: one at

the Idaho National Laboratories (INL) and the other at the

University of Massachusetts Lowell (UML).  The INL

interface includes a three-dimensional representation of the

system’s map and the robot’s placement within that map,

while the UML system has only a two-dimensional map in

its video-centric design.  To learn which interface design

elements are most useful in different situations, we

conducted usability studies of the two robot systems at the

urban search and rescue (USAR) test arena at the National

Institute of Standards and Technology (NIST) in

Gaithersburg, MD.

This paper presents the two robot systems and their

interface designs, the experiment and analysis

methodologies, the results of the experiments and strategies

for designing more effective USAR interfaces.  Beyond

urban search and rescue, we feel the results will be relevant

to the design of remote robot interfaces intended for search

or monitoring tasks.

II. ROBOT SYSTEMS

This section describes the robot hardware, autonomy

modes and the interfaces for the INL and UML systems.

A. Idaho National Laboratories

The INL control architecture is the product of an iterative

development cycle where behaviors have been evaluated in

the hands of users [2], modified, and tested again. The INL

has developed a behavior architecture that can port to a

variety of robot geometries and sensor suites. This

architecture, called the Robot Intelligence Kernel, is being

used by several HRI research teams throughout the

community. The experiments discussed in this paper utilized

the iRobot ATRV-Mini (shown in Figure 1), which has laser

and sonar range finding, wheel encoding, and streaming

video.

 Using a technique described in Pacis et al. [10], a guarded

motion behavior permits the robot to take initiative to avoid

collisions. In response to laser and sonar range sensing of

nearby obstacles, the robot scales down its speed using an

event horizon calculation, which measures the maximum

speed the robot can safely travel in order to come to a stop

approximately two inches from the obstacle. By scaling

down the speed in many small increments, it is possible to

insure that, regardless of the commanded translational or

rotational velocity, guarded motion will stop the robot at the

same distance from an obstacle. This approach provides

predictability and ensures minimal interference with the

operator’s control of the vehicle.  If the robot is being driven

near an obstacle rather than directly towards it, guarded

motion will not stop the robot, but may slow its speed

according to the event horizon calculation.

Various modes of operation are available, affording the

robot different types of behavior and levels of autonomy.

These modes include Teleoperation where the robot takes no

initiative, Safe Teleoperation where the robot takes initiative

to protect itself and the local environment, Standard Shared

Mode where the robot navigates based upon understanding

of the environment, yet yields to human joystick input, and

Collaborative  Tasking  Mode where the robot autonomously



Figure 1: The INL robot: an iRobot ATRV-Mini

creates an action plan based on the human mission-level

input (e.g. go to a point selected within the map, return to

start, go to an entity).

Control of the INL system is actuated through the use of an

augmented virtuality [3] 3D control interface that combines

the map, robot pose, video, and camera orientation into a

single perspective of the environment [8, 9].   From  the 3D

control interface, the operator has the ability to place various

icons representing objects or places of interest in the

environment (e.g. start, victim, or custom label).  Once an

icon has been placed in the environment, the operator may

enter into a Collaborative Task by right-clicking the icon

which commissions the robot to autonomously navigate to

the location of interest.  The other autonomy modes of the

robot are enacted through the menu on the right side of the

interface.

As the robot travels through the remote environment it

builds a map of the area. Through continuous evaluation of

sensor data, the robot attempts to keep track of its position

with respect to its map.  As shown in Figure 2, the robot is

represented as the red vehicle in the 3D control interface.

The virtual robot is sized proportionally to demonstrate how

it fits into its environment.  Red triangles will appear if the

robot is blocked and unable to go in a particular direction.

The user has the ability to select the perspective through

which the virtual environment is used by choosing the Close,

Elevated or Far button.  The Default View returns the

perspective to the original robot-centered perspective. The

blue extruded columns are a representation of the robot’s

map.  The map will grow as the robot travels through the

environment.

B. UMass Lowell

UMass Lowell’s robot platform is an iRobot ATRV-Jr

research robot.  This robot came equipped with a SICK laser

rangefinder, positional sensors and a ring of 26 sonars.  We

have added front and rear pan-tilt-zoom cameras, a forward-

looking infrared (FLIR) camera, a carbon dioxide (CO2)

sensor, and a lighting system (see Figure 3).

Figure 2: The INL USAR interface

The robot uses autonomy modes similar to INL’s; in fact,

the basis for the current mode system is INL’s system.

Teleoperation, safe, goal (a modified shared mode) and

escape modes are available.

In the current version of the interface (see [1] for a

description of the earlier system), there are two video panels,

one for each of the two cameras on the robot (see Figure 4).

The main video panel is the larger of the two and is where

the user will focus while driving the robot.  The second

video panel is smaller, is placed at the top-right of the main

video window, and is mirrored to simulate a rear view mirror

in a car.  By default, the front camera is in the main video

panel, while the rear camera is displayed in the smaller rear

view mirror video panel.

The robot operator has the ability to switch camera views,

in what we call the Automatic Direction Reversal (ADR)

mode.  In ADR mode, the rear camera is displayed on the

main video panel, and the front camera is on the smaller

panel.  All the driving commands and the range panel

(described below) are reversed.  Pressing forward on the

joystick in this case will cause the robot to back up, but to

the user, the robot will be moving “forward” (i.e., the

direction that their current camera is looking).  This

essentially eliminates the front/back of the robot, and cuts

down on rear hits, because the user is now very rarely

“backing up.”

The main video panel displays text identifying which

camera is currently being displayed in it and the current

zoom level of the camera (1x - 16x).  The interface has an

option for showing crosshairs, indicating the current pan and

tilt of the camera.

Information from the sonar sensors and the laser

rangefinder is displayed in the range data panel located

directly under the main video panel.  When nothing is near

the  robot,   the  color  of  the  box  is  the  same  gray  as  the



 
Figure 3: The UML robot: an iRobot ATRV-JR

background of the interface, to indicate nothing is there.  As

the robot approaches an obstacle at a 1 ft distance, the box

will turn to yellow, and then red when the robot is very close

(less than .5 ft).  The ring is drawn in a perspective view,

which makes it look like a trapezoid.  This perspective view

was designed to give the user the sensation that they are

sitting directly behind the robot.  If the user pans the camera

left or right, this ring will rotate opposite the direction of the

pan.  If, for instance, the front left corner turns red, the user

can pan the camera left to see the obstacle, the ring will then

rotate right, so that the red box will line up with the video

showing the obstacle sensed by the range sensors.  The blue

triangle, in the middle of the range data panel, indicates the

true front of the robot. The system aims to make the robot’s

front and back be mirror images, so ADR mode will work

the same with both; however, the SICK laser, CO2 sensor,

and FLIR camera only point towards the front of the robot,

so this blue arrow helps the user to distinguish front and

back if needed.

The mode indicator panel displays the current mode that

the robot is in.  The CO2 indicator, located to the right of the

main video, displays the current ambient CO2 levels in the

area.  As the levels rise, the yellow marker will move up.  If

it is above the blue line, then there is possible life in the area.

The bottom right of the interface has the status panel.  This

consists of the battery level, current time, whether the lights

are on or off, and the maximum speed level of the robot.

The robot is controlled via joystick.  In order for the robot

to move, the operator must press the trigger, and then give it

a direction.  If the user presses the joystick forward, the

robot  will  move  forward,  left  for  left, etc.   On top of the

joystick is a hat sensor with can read eight compass

directions.  This sensor is used to pan and tilt the camera.

By default, pressing up on this sensor will cause the camera

to tilt up, likewise pressing left will pan the camera left. An

option in the interface makes it so that pressing up will cause

the camera to tilt down; some people, especially pilots, like

this option.   The  joystick  also contains buttons to home the

 
Figure 4: The UML USAR interface

cameras, perform zoom functions, and toggle the brake.  It

also has a button to toggle Automatic Direction Reversal

mode.  Finally, a scrollable wheel to set the maximum speed

of the system is also located on the joystick.

III. METHODOLOGY

A. Experimental Set-Up

Because we wished to see differences in preferences and

performance with the UML interface and the INL interface,

we designed a within-subjects experiment with the

independent variable being interface type.  Eight people (7

men, 1 woman) ranging in age from 25 to 60 with search and

rescue experience agreed to participate.

We asked participants to fill out a pre-experiment

questionnaire so we could understand their relevant

experience prior to training them on how to control one of

the robots.  We allowed participants time to practice using

the robot in a location outside the test arena and not within

their line of sight so they could become comfortable with

remotely moving the robot and the camera(s) as well as the

different autonomy modes.   Subsequently, we moved the

robot to the arena and asked them to maneuver through the

area to find victims.  We allowed 25 minutes to find as many

victims as possible, followed by a 5-minute task aimed

primarily at ascertaining situation awareness (SA). After

that, we took a short break during which an experimenter

asked several Likert scale questions.  Finally, we repeated

these steps using a different robot, ending with a final short

questionnaire and debriefing.  The entire procedure took

approximately 2 1/2 hours.

The specific tasking given to the participants during their

25-minute runs was to “fully explore this approximately

2000 foot space and find any victims that may be there,

keeping in mind that, if this was a real USAR situation,

you’d need to be able to direct people to where the victims

were located.”  Additionally, we asked participants to “think



aloud” [4] during the task.  After this initial run, participants

were asked to maneuver the robot back to a previously seen

point, or maneuver as close as they could get to it in five

minutes.  Participants were not informed ahead of time that

they would need to remember how to get back to any

particular point.

We counterbalanced the experiment in two ways to avoid

confounders.  Five of the eight participants started with the

UMass Lowell system and the other three participants began

with the INL system.  (Due to battery considerations, a robot

that went first at the start of the day had to alternate with the

other system for the remainder of that day.  UML started first

in testing on days one (2 subjects) and three (3 subjects).

INL started first on day two (3 subjects).) Additionally, two

different starting positions were identified in the arena so

that knowledge of the arena gained from using the first

interface would not transfer to the use of the second

interface; starting points were split changed between users.

The two counterbalancing techniques led to four different

combinations of initial arena entrance and initial interface.

The tests were conducted in the Reference Test Arenas for

Autonomous Mobile Robots developed by the National

Institute of Standards and Technology (NIST) [5, 6].  During

these tests, the arena consisted of a maze of wooden

partitions and stacked cardboard boxes.  The first half of the

arena had wider corridors than the second half.

B. Analysis Methods

Analysis consisted of two main thrusts: understanding how

well participants performed with each of the two interfaces,

and interpreting their comments on post-run questionnaires.

Performance measures are implicit measures of the quality

of the user interaction provided to users. Under ordinary

circumstances, users who were given usable interfaces could

be expected to perform better at their tasks than those who

were given poor interfaces. Accordingly, we analyzed the

percentage of the arena explored, the number of times the

participants bumped the robot against obstacles, and the

number of victims found.

After each run, participants were asked to name the

features that they found “most useful” and “least useful.” We

inferred that the “useful” features were considered by

participants to be positive aspects of the interface and the

“least useful” features were, at least in some sense, negative.

After reviewing all of the comments from the post-run

questionnaires, we determined that they fell into five

categories: video, mapping, other sensors, input devices, and

autonomy modes. Results are provided in the next section.

IV. RESULTS AND DISCUSSION

A. Performance Measures

1) Area Coverage: We hypothesized that the three-

dimensional mapping system on INL’s interface would

provide users with an easier exploration phase.  Table I gives

the results of arena coverage for each participant with each

of the robot systems.  There is a significant difference

(p<.022, using a two-tailed paired t-test with dof=7) between

the amount of area covered by the INL robot and the amount

covered by the UML robot, seeming to confirm our

hypothesis.

One possible confounding variable for this difference is the

size of the two robots.  The ATRV-Mini (INL’s robot) is

smaller than the ATRV-Junior (UML’s robot) and thus could

fit in smaller areas.  However, the first half of the arena,

which was the primary area of coverage, had the widest

areas, fitting both robots comfortably.

TABLE I

COMPARISON OF THE PERCENTAGE OF THE ARENA COVERED

 FOR TWO INTERFACES

% Area Covered

Participant INL UML

1 8.7 12.6

2 37.9 25.2

3 34.8 34.8

4 37.9 19.7

5 30.3 27.3

6 33.3 22.7

7 53.0 31.8

8 30.3 19.7

Average 33.3

(7.8)

24.2

(5.8)

2) Number of Bumps: One implicit measure of situation

awareness is the number of times that the robot bumps into

something in the environment.  However, there were several

confounding issues in this measure.  First, the INL robot

experienced a sensor failure in its right rear sensors during

the testing.  Second, the INL robot has a similar length and

width, meaning that it can turn in place without hitting

obstacles; the UML robot is longer than it is wide, creating

the possibility of hitting obstacles on the sides of the robot.

Finally, subjects were instructed not to use the teleoperation

mode (no sensor mediation) on the INL robot, while they

were allowed to use it on the UML robot.

Despite these confounding factors, we found no significant

difference in the number of hits that occurred on the front of

the robot (INL average: 4.0 (3.7); UML average: 4.9 (5.1);

p=.77).  Both robots are equipped with similar cameras on

the front and both interfaces present some sort of ranging

data to the user.  As such, the awareness level of obstacles in

front of the robot seems to be similar between systems.

When hits occurring in the back right of the robot were

eliminated from both counts, we did find a significant

difference in the number of hits (INL average: 2.5 (1.6);

UML average: .75 (1.2); p<.037).  The UML robot has a

camera on the rear of the robot, adding additional sensing

capability that the INL robot does not have.  While both

robot systems present ranging information from the back of



the robot on the interface, the addition of a rear camera

appears to improve awareness of obstacles behind the robot.

The systems also had a significant difference in the number

of hits on the side of the robot (INL average: 0 (0); UML

average: 0.5 (0.5); p<.033).  As the two robots had

equivalent ranging data on their sides, the difference in hits

appears to come solely from the robot’s size and geometry.

3) Victims Found: We had hypothesized that the emphasis

on the video window and other sensor displays such as the

FLIR and CO2 sensor of the UML interface would allow for

users to find more victims in the arena.  However, this

hypothesis was not borne out by the data because there was

an insignificant difference (p=.35) in the number of victims

found. Using the INL system, participants found an average

of .63 (.74) victims.  With the UML system, participants

found an average of  1.0 (1.1) victims.

In general, victim placement in the arena was sparse and

the victims that were in the arena were well hidden.  Using

the number of victims found as an awareness measure might

have been improved by a larger number of victims, with

some easier to find than others.

B. User Preferences

1) Likert scale: At the end of each run, users were asked to

rank the ease of use of each interface, with 1 being extremely

difficult to use and 5 being very easy to use.  In this

subjective evaluation, operators found the INL interface

more difficult to use: 2.6 for INL vs 3.6 for UML (p =

.0185).

Users were also asked to rank how the controls helped or

hindered them in performing their task, with 1 being

“hindered me” and 5 being “helped me tremendously.”

Operators felt that the UML controls helped them more: 4.0

for UML and 3.2 for INL (p=.0547).

2) Interface Features: Users were also asked what features

on the robots helped them and which features did not.  We

performed an analysis of these positive and negative

statements, clustering them into the following groups: video,

mapping, sensors, input devices and autonomy.  The

statements revealed insights into the features of the systems

that the users felt were most important.

In the mapping category, there were a total of 10 positive

mapping comments and one negative for the INL system and

2 negative mapping comments overall for the UML system.

We believe that the number of comments shows that the

participants recognized the emphasis on mapping within the

INL interface and shows that the three-dimensional maps

were preferred to the two-dimensional map of the UML

interface. Furthermore, the preference of the INL mapping

display and the improved average percentage of the

environment covered by the INL robot suggests that the user

preferences were in-line with requirements for improved

performance.  Interestingly, two of the positive comments

for INL identified the ability to have both a three-

dimensional and two-dimensional map.  Subjects also liked

the waypoint marking capabilities of the INL interface.

There were a similar number of comments made on video

about the two systems (13 for UML and 16 for INL). This

seems to suggest that video is very important in this task, and

most subjects were focused on having the best video

possible. There were more positive comments for UML  (10

positive and 3 negative) and more negative comments for

INL (3 positive and 13 negative).  The INL video window

moved when the camera was panned or tilted; the robot

stayed in a fixed position within the map while the video

view moved around the robot.  This video movement caused

occlusion and distortion of the video when the camera was

panned and tilted, making it difficult to use the window to

identify victims or places in the environment. It is of interest

that despite the feelings by many participants about how the

video should be presented, there was no significant

difference (p=.35) in performance with respect to the number

of victims found. This disconnect between preference and

performance suggests that more work is required to

understand what presentation of the video will actually

improve the operator’s ability to search an environment.

Interestingly, most of the positive video comments for

UML did not address a fixed position window (only 1

comment).  Four users commented that they liked the ability

to home the camera (INL had two positive comments about

this feature as well).  Three users commented that they liked

having two cameras.

All comments on input devices were negative for both

robots, suggesting that people just expect that things will

work well for input devices and will complain only if they

aren’t working.  There were a similar number of positive

comments for autonomy, suggesting that users may have

noticed when the robot had behaviors that helped.  It is

possible that the users didn’t know what to expect with a

robot and thus were just happy with the exhibited behaviors

and accepted things that they may not have liked.

We saw many more comments on UML’s sensors (non-

video), which identifies the emphasis on adding sensors on

the UML system.  INL had two negative comments for not

having lighting available on their robot.  UML had 10

positive comments (1 each for lights, FLIR and CO2, 4 for

the laser ranging display and 3 for the sonar ring display)

and 3 negative comments (2 for the sonar ring display blocks

not being definitive and 1 for the FLIR camera).

Our analysis suggests that there are a few categories of

great importance to operators: video, labeling of maps,

ability to change perspective between 3D and 2D maps,

additional sensors, and autonomy.  In fact, in their suggested

ideal interface, operators focus on these categories.

C. Designing the Ideal Interface

After using both interfaces, users were asked which

features they would include if they could combine features of



the two interfaces to make one that works better for them.

Every user had his or her own opinion, as follows:

• Subject 1 wanted to combine map features

(breadcrumbs on the UML interface and labeling

available on the INL interface).

• Subject 2 wanted to keep both types of map view (3D

INL view, 2D UML view), have lights and add other

camera views (although this user also remarked that he

didn’t use UML’s rear view camera much).

• Subject 3 wanted to add the ability to mark waypoints

to the UML system.

• Subject 4 liked the blue blocks on INL (3D map

walls), the crosshairs on UML (pan and tilt indicators

on the video), the stationary camera window on the

UML interface, marking entities and going to

waypoints on the INL interface, the breadcrumbs in

the UML map, and the bigger camera view that the

UML interface had.

• Subject 5 liked the video set up on UML and preferred

the features on the UML interface.  He would not

combine any features.

• Subject 6 wanted a fixed camera window (like UML),

a 2D map in the left hand corner of the 3D interface,

the ability to mark waypoints on the map, roll and

pitch indicators, and lights on the robot.

• Subject 7 wanted to take UML as a baseline interface,

but wanted a miniaturized blue block map (3D map)

instead of the 2D map, since it provided more scale

information.

• Subject 8 wanted to start with the UML interface, with

the waypoint marking feature and shared mode

capability of the INL system.

When asked to design their ideal interface, most subjects

commented on the maps, preferring the 3D map view to the

2D view; the 3D map view provides more information about

the robot’s orientation with respect to the world.  Features of

the two maps could be combined, either with a camera view

that could swing between 3D and 2D or by putting both

types of maps on the screen.  However, operators did

comment that they did not like the way that the current

implementation of the blue blocks obscured the video

window when it was tilted down or panned over a wall.

Most subjects also expressed a desire to have an awareness

of where they had been, with the ability to make annotations

to the map.  They wanted to have the “breadcrumbs” present

on the UML interface, which showed the path that the robot

had taken through the arena.  This feature was available on

the INL interface, but not turned on for the experiments.

Subjects also wanted to be able to mark waypoints on the

map, which was a feature in the INL system.

The subjects did not like the moving video window present

on the INL interface, preferring a fixed camera window

instead.  We believe that in a USAR task, a fixed window of

constant size allows for the operator to more effectively

judge the current situation.  While this hypothesis seems to

be borne out by the comments discussed above, it was not

verified by measures such as number of victims found and

number of hits in the front of the robot, both of which were

not statistically different between the two systems.

Interestingly, when designing their interface, no subjects

commented on the additional sensors for finding victims that

were present on the UML system: the FLIR camera and the

CO2 sensor.  It seemed that their focus fell on being able to

understand where they were in the environment, where they

had been, and what they could see in the video.

V. CONCLUSIONS

Eight trained USAR personnel tested two robot systems.

The purpose of the experiment was to understand how the

robot systems affected the operator’s ability to perform a

search task in an unknown environment. The two robot

systems utilized different physical robots and control

algorithms as well as different interfaces and sensor suites.

From the experiment, it was observed that the camera

information was particularly important to the operators

because many of their likes and dislikes concerned the

presentation of the video information.  However, it is of note

that despite the subjective preferences of the operators, there

was not a significant difference in the number of victims

found.  Furthermore, it was observed that the search task was

largely unsuccessful as, on average, less than one of four

victims was found. Improvement of technology and

evaluation techniques will be necessary to answer the

question of what improves performance in search tasks.

The occlusion of video by other sets of information may

have influenced the operator’s ability to adequately search

the environment, as it was more difficult for the operator to

see the entire visual scene. Another possibility is that the

navigational requirement of the task took sufficient effort

from the participant that it negatively impacted the

operator’s ability to search the environment.  Even though

there were various levels of autonomy available to facilitate

the navigation of the robot, participants often expressed

confusion about where the robot had been and what they had

seen previously.  To improve the usefulness of robot systems

in search and detection tasks in general, it will be important

to reduce the operator’s responsibility to perform both the

navigation and search aspects of the task.

VI. FUTURE WORK

There are two efforts currently under investigation that are

the result of the experiments described in this paper. The

first effort is a method that will enable operators to focus on

the search aspect of the task by minimizing his or her

responsibility in the navigating through the remote

environment.  Although previous work has sought to reduce

the human’s navigational responsibility by improving the

robot’s navigational autonomy, it left the navigation and

exploration tasks as separate processes that both required a



level of operator attention. The new approach currently being

investigated integrates the navigational task into the search

task by providing a “navigate-by-camera” mode.  In this

mode, the operator directs the camera to points of interest

and the robot maneuvers to them while avoiding obstacles

and keeping the camera focused on the specified point.  This

mode should help the operator by allowing them to focus on

where the camera is pointing and not how to get the robot

from place to place.

The second effort being investigated is to help the operator

understand where they have and have not searched within the

remote environment.  To do this, we will continue the use of

labels and icons, but make them more customizable so that

they can include user-defined images to represent places of

interest.  Additionally, even though a breadcrumb trail was

useful to indicate where the robot had been, it did not

illustrate in three-dimensional space where the operators

have looked.  To increase this knowledge we are

investigating the use of a representation that presents

information about where the camera was pointing as the

robot was moved through the environment.  This should

enable operators to quickly recognize what parts of the

environment have been “seen” by the robot and continue on

to unseen areas.  Finally, to help the operator remember the

environment better, we are investigating new ways to

transition between ego-and exo-centric perspectives of the

environment such that the transition is quick and intuitive

and supports a “quick-glance” at the robot’s location within

a larger environment.

We anticipate that these approaches will improve the

usefulness of remote robots in urban search and rescue tasks

as well as other remote robot tasks that require the use of

video information in conjunction with navigational

information.
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